Author: pullfoure.online

  • Computer 

    computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations (computation). Modern digital electronic computers can perform generic sets of operations known as programs. These programs enable computers to perform a wide range of tasks. The term computer system may refer to a nominally complete computer that includes the hardwareoperating systemsoftware, and peripheral equipment needed and used for full operation; or to a group of computers that are linked and function together, such as a computer network or computer cluster. It is sometimes named general purpose computer to distinguish it from a computer appliance.

    A broad range of industrial and consumer products use computers as control systems, including simple special-purpose devices like microwave ovens and remote controls, and factory devices like industrial robots. Computers are at the core of general-purpose devices such as personal computers and mobile devices such as smartphones. Computers power the Internet, which links billions of computers and users.[citation needed]

    Early computers were meant to be used only for calculations. Simple manual instruments like the abacus have aided people in doing calculations since ancient times. Early in the Industrial Revolution, some mechanical devices were built to automate long, tedious tasks, such as guiding patterns for looms. More sophisticated electrical machines did specialized analog calculations in the early 20th century. The first digital electronic calculating machines were developed during World War II, both electromechanical and using thermionic valves. The first semiconductor transistors in the late 1940s were followed by the silicon-based MOSFET (MOS transistor) and monolithic integrated circuit chip technologies in the late 1950s, leading to the microprocessor and the microcomputer revolution in the 1970s. The speed, power, and versatility of computers have been increasing dramatically ever since then, with transistor counts increasing at a rapid pace (Moore’s law noted that counts doubled every two years), leading to the Digital Revolution during the late 20th and early 21st centuries.[citation needed]

    Conventionally, a modern computer consists of at least one processing element, typically a central processing unit (CPU) in the form of a microprocessor, together with some type of computer memory, typically semiconductor memory chips. The processing element carries out arithmetic and logical operations, and a sequencing and control unit can change the order of operations in response to stored information. Peripheral devices include input devices (keyboardsmicejoysticks, etc.), output devices (monitorsprinters, etc.), and input/output devices that perform both functions (e.g. touchscreens). Peripheral devices allow information to be retrieved from an external source, and they enable the results of operations to be saved and retrieved.[citation needed]

    Etymology

    A human computer.
    human computer, with microscope and calculator, 1952

    It was not until the mid-20th century that the word acquired its modern definition; according to the Oxford English Dictionary, the first known use of the word computer was in a different sense, in a 1613 book called The Yong Mans Gleanings by the English writer Richard Brathwait: “I haue [sic] read the truest computer of Times, and the best Arithmetician that euer [sic] breathed, and he reduceth thy dayes into a short number.” This usage of the term referred to a human computer, a person who carried out calculations or computations. The word continued to have the same meaning until the middle of the 20th century. During the latter part of this period, women were often hired as computers because they could be paid less than their male counterparts.[1] By 1943, most human computers were women.[2]

    The Online Etymology Dictionary gives the first attested use of computer in the 1640s, meaning ‘one who calculates’; this is an “agent noun from compute (v.)”. The Online Etymology Dictionary states that the use of the term to mean “‘calculating machine’ (of any type) is from 1897.” The Online Etymology Dictionary indicates that the “modern use” of the term, to mean ‘programmable digital electronic computer’ dates from “1945 under this name; [in a] theoretical [sense] from 1937, as Turing machine“.[3] The name has remained, although modern computers are capable of many higher-level functions.

    History

    Main articles: History of computing and History of computing hardware

    For a chronological guide, see Timeline of computing.

    Pre-20th century

    The Ishango bone, a bone tool dating back to prehistoric Africa

    Devices have been used to aid computation for thousands of years, mostly using one-to-one correspondence with fingers. The earliest counting device was most likely a form of tally stick. Later record keeping aids throughout the Fertile Crescent included calculi (clay spheres, cones, etc.) which represented counts of items, likely livestock or grains, sealed in hollow unbaked clay containers.[a][4] The use of counting rods is one example.

    The Chinese suanpan (算盘). The number represented on this abacus is 6,302,715,408.

    The abacus was initially used for arithmetic tasks. The Roman abacus was developed from devices used in Babylonia as early as 2400 BCE. Since then, many other forms of reckoning boards or tables have been invented. In a medieval European counting house, a checkered cloth would be placed on a table, and markers moved around on it according to certain rules, as an aid to calculating sums of money.[5]

    The Antikythera mechanism, dating back to ancient Greece circa 150–100 BCE, is an early analog computing device.

    The Antikythera mechanism is believed to be the earliest known mechanical analog computer, according to Derek J. de Solla Price.[6] It was designed to calculate astronomical positions. It was discovered in 1901 in the Antikythera wreck off the Greek island of Antikythera, between Kythera and Crete, and has been dated to approximately c. 100 BCE. Devices of comparable complexity to the Antikythera mechanism would not reappear until the fourteenth century.[7]

    Many mechanical aids to calculation and measurement were constructed for astronomical and navigation use. The planisphere was a star chart invented by Abū Rayhān al-Bīrūnī in the early 11th century.[8] The astrolabe was invented in the Hellenistic world in either the 1st or 2nd centuries BCE and is often attributed to Hipparchus. A combination of the planisphere and dioptra, the astrolabe was effectively an analog computer capable of working out several different kinds of problems in spherical astronomy. An astrolabe incorporating a mechanical calendar computer[9][10] and gear-wheels was invented by Abi Bakr of IsfahanPersia in 1235.[11] Abū Rayhān al-Bīrūnī invented the first mechanical geared lunisolar calendar astrolabe,[12] an early fixed-wired knowledge processing machine[13] with a gear train and gear-wheels,[14] c. 1000 AD.

    The sector, a calculating instrument used for solving problems in proportion, trigonometry, multiplication and division, and for various functions, such as squares and cube roots, was developed in the late 16th century and found application in gunnery, surveying and navigation.

    The planimeter was a manual instrument to calculate the area of a closed figure by tracing over it with a mechanical linkage.

    slide rule

    The slide rule was invented around 1620–1630, by the English clergyman William Oughtred, shortly after the publication of the concept of the logarithm. It is a hand-operated analog computer for doing multiplication and division. As slide rule development progressed, added scales provided reciprocals, squares and square roots, cubes and cube roots, as well as transcendental functions such as logarithms and exponentials, circular and hyperbolic trigonometry and other functions. Slide rules with special scales are still used for quick performance of routine calculations, such as the E6B circular slide rule used for time and distance calculations on light aircraft.

    In the 1770s, Pierre Jaquet-Droz, a Swiss watchmaker, built a mechanical doll (automaton) that could write holding a quill pen. By switching the number and order of its internal wheels different letters, and hence different messages, could be produced. In effect, it could be mechanically “programmed” to read instructions. Along with two other complex machines, the doll is at the Musée d’Art et d’Histoire of NeuchâtelSwitzerland, and still operates.[15]

    In 1831–1835, mathematician and engineer Giovanni Plana devised a Perpetual Calendar machine, which through a system of pulleys and cylinders could predict the perpetual calendar for every year from 0 CE (that is, 1 BCE) to 4000 CE, keeping track of leap years and varying day length. The tide-predicting machine invented by the Scottish scientist Sir William Thomson in 1872 was of great utility to navigation in shallow waters. It used a system of pulleys and wires to automatically calculate predicted tide levels for a set period at a particular location.

    The differential analyser, a mechanical analog computer designed to solve differential equations by integration, used wheel-and-disc mechanisms to perform the integration. In 1876, Sir William Thomson had already discussed the possible construction of such calculators, but he had been stymied by the limited output torque of the ball-and-disk integrators.[16] In a differential analyzer, the output of one integrator drove the input of the next integrator, or a graphing output. The torque amplifier was the advance that allowed these machines to work. Starting in the 1920s, Vannevar Bush and others developed mechanical differential analyzers.

    In the 1890s, the Spanish engineer Leonardo Torres Quevedo began to develop a series of advanced analog machines that could solve real and complex roots of polynomials,[17][18][19][20] which were published in 1901 by the Paris Academy of Sciences.[21]

    First computer

    Charles Babbage

    A diagram of a portion of Babbage’s Difference engine

    The Difference Engine Number 2 at the Intellectual Ventures laboratory in Seattle

    Charles Babbage, an English mechanical engineer and polymath, originated the concept of a programmable computer. Considered the “father of the computer“,[22] he conceptualized and invented the first mechanical computer in the early 19th century.

    After working on his difference engine he announced his invention in 1822, in a paper to the Royal Astronomical Society, titled “Note on the application of machinery to the computation of astronomical and mathematical tables”.[23] He also designed to aid in navigational calculations, in 1833 he realized that a much more general design, an analytical engine, was possible. The input of programs and data was to be provided to the machine via punched cards, a method being used at the time to direct mechanical looms such as the Jacquard loom. For output, the machine would have a printer, a curve plotter and a bell. The machine would also be able to punch numbers onto cards to be read in later. The engine would incorporate an arithmetic logic unitcontrol flow in the form of conditional branching and loops, and integrated memory, making it the first design for a general-purpose computer that could be described in modern terms as Turing-complete.[24][25]

    The machine was about a century ahead of its time. All the parts for his machine had to be made by hand – this was a major problem for a device with thousands of parts. Eventually, the project was dissolved with the decision of the British Government to cease funding. Babbage’s failure to complete the analytical engine can be chiefly attributed to political and financial difficulties as well as his desire to develop an increasingly sophisticated computer and to move ahead faster than anyone else could follow. Nevertheless, his son, Henry Babbage, completed a simplified version of the analytical engine’s computing unit (the mill) in 1888. He gave a successful demonstration of its use in computing tables in 1906.

    Electromechanical calculating machine

    Electro-mechanical calculator (1920) by Leonardo Torres Quevedo.

    In his work Essays on Automatics published in 1914, Leonardo Torres Quevedo wrote a brief history of Babbage’s efforts at constructing a mechanical Difference Engine and Analytical Engine. The paper contains a design of a machine capable to calculate formulas like ax(y−z)2{\displaystyle a^{x}(y-z)^{2}}, for a sequence of sets of values. The whole machine was to be controlled by a read-only program, which was complete with provisions for conditional branching. He also introduced the idea of floating-point arithmetic.[26][27][28] In 1920, to celebrate the 100th anniversary of the invention of the arithmometer, Torres presented in Paris the Electromechanical Arithmometer, which allowed a user to input arithmetic problems through a keyboard, and computed and printed the results,[29][30][31][32] demonstrating the feasibility of an electromechanical analytical engine.[33]

    Analog computers

    Main article: Analog computer

    Sir William Thomson‘s third tide-predicting machine design, 1879–81

    During the first half of the 20th century, many scientific computing needs were met by increasingly sophisticated analog computers, which used a direct mechanical or electrical model of the problem as a basis for computation. However, these were not programmable and generally lacked the versatility and accuracy of modern digital computers.[34] The first modern analog computer was a tide-predicting machine, invented by Sir William Thomson (later to become Lord Kelvin) in 1872. The differential analyser, a mechanical analog computer designed to solve differential equations by integration using wheel-and-disc mechanisms, was conceptualized in 1876 by James Thomson, the elder brother of the more famous Sir William Thomson.[16]

    The art of mechanical analog computing reached its zenith with the differential analyzer, built by H. L. Hazen and Vannevar Bush at MIT starting in 1927. This built on the mechanical integrators of James Thomson and the torque amplifiers invented by H. W. Nieman. A dozen of these devices were built before their obsolescence became obvious.[citation needed] By the 1950s, the success of digital electronic computers had spelled the end for most analog computing machines, but analog computers remained in use during the 1950s in some specialized applications such as education (slide rule) and aircraft (control systems).[citation needed]

    Digital computers

    Electromechanical

    Claude Shannon‘s 1937 master’s thesis laid the foundations of digital computing, with his insight of applying Boolean algebra to the analysis and synthesis of switching circuits being the basic concept which underlies all electronic digital computers.[35][36]

    By 1938, the United States Navy had developed an electromechanical analog computer small enough to use aboard a submarine. This was the Torpedo Data Computer, which used trigonometry to solve the problem of firing a torpedo at a moving target.[citation needed] During World War II similar devices were developed in other countries as well.[citation needed]

    Replica of Konrad Zuse‘s Z3, the first fully automatic, digital (electromechanical) computer

    Early digital computers were electromechanical; electric switches drove mechanical relays to perform the calculation. These devices had a low operating speed and were eventually superseded by much faster all-electric computers, originally using vacuum tubes. The Z2, created by German engineer Konrad Zuse in 1939 in Berlin, was one of the earliest examples of an electromechanical relay computer.[37]

    Konrad Zuse, inventor of the modern computer[38][39]

    In 1941, Zuse followed his earlier machine up with the Z3, the world’s first working electromechanical programmable, fully automatic digital computer.[40][41] The Z3 was built with 2000 relays, implementing a 22 bit word length that operated at a clock frequency of about 5–10 Hz.[42] Program code was supplied on punched film while data could be stored in 64 words of memory or supplied from the keyboard. It was quite similar to modern machines in some respects, pioneering numerous advances such as floating-point numbers. Rather than the harder-to-implement decimal system (used in Charles Babbage‘s earlier design), using a binary system meant that Zuse’s machines were easier to build and potentially more reliable, given the technologies available at that time.[43] The Z3 was not itself a universal computer but could be extended to be Turing complete.[44][45]

    Zuse’s next computer, the Z4, became the world’s first commercial computer; after initial delay due to the Second World War, it was completed in 1950 and delivered to the ETH Zurich.[46] The computer was manufactured by Zuse’s own company, Zuse KG, which was founded in 1941 as the first company with the sole purpose of developing computers in Berlin.[46] The Z4 served as the inspiration for the construction of the ERMETH, the first Swiss computer and one of the first in Europe.[47]

    Vacuum tubes and digital electronic circuits

    Purely electronic circuit elements soon replaced their mechanical and electromechanical equivalents, at the same time that digital calculation replaced analog. The engineer Tommy Flowers, working at the Post Office Research Station in London in the 1930s, began to explore the possible use of electronics for the telephone exchange. Experimental equipment that he built in 1934 went into operation five years later, converting a portion of the telephone exchange network into an electronic data processing system, using thousands of vacuum tubes.[34] In the US, John Vincent Atanasoff and Clifford E. Berry of Iowa State University developed and tested the Atanasoff–Berry Computer (ABC) in 1942,[48] the first “automatic electronic digital computer”.[49] This design was also all-electronic and used about 300 vacuum tubes, with capacitors fixed in a mechanically rotating drum for memory.[50]

    Two women are seen by the Colossus computer.
    Colossus, the first electronic digital programmable computing device, was used to break German ciphers during World War II. It is seen here in use at Bletchley Park in 1943.

    During World War II, the British code-breakers at Bletchley Park achieved a number of successes at breaking encrypted German military communications. The German encryption machine, Enigma, was first attacked with the help of the electro-mechanical bombes which were often run by women.[51][52] To crack the more sophisticated German Lorenz SZ 40/42 machine, used for high-level Army communications, Max Newman and his colleagues commissioned Flowers to build the Colossus.[50] He spent eleven months from early February 1943 designing and building the first Colossus.[53] After a functional test in December 1943, Colossus was shipped to Bletchley Park, where it was delivered on 18 January 1944[54] and attacked its first message on 5 February.[50]

    Colossus was the world’s first electronic digital programmable computer.[34] It used a large number of valves (vacuum tubes). It had paper-tape input and was capable of being configured to perform a variety of boolean logical operations on its data, but it was not Turing-complete. Nine Mk II Colossi were built (The Mk I was converted to a Mk II making ten machines in total). Colossus Mark I contained 1,500 thermionic valves (tubes), but Mark II with 2,400 valves, was both five times faster and simpler to operate than Mark I, greatly speeding the decoding process.[55][56]

    ENIAC was the first electronic, Turing-complete device, and performed ballistics trajectory calculations for the United States Army.

    The ENIAC[57] (Electronic Numerical Integrator and Computer) was the first electronic programmable computer built in the U.S. Although the ENIAC was similar to the Colossus, it was much faster, more flexible, and it was Turing-complete. Like the Colossus, a “program” on the ENIAC was defined by the states of its patch cables and switches, a far cry from the stored program electronic machines that came later. Once a program was written, it had to be mechanically set into the machine with manual resetting of plugs and switches. The programmers of the ENIAC were six women, often known collectively as the “ENIAC girls”.[58][59]

    It combined the high speed of electronics with the ability to be programmed for many complex problems. It could add or subtract 5000 times a second, a thousand times faster than any other machine. It also had modules to multiply, divide, and square root. High speed memory was limited to 20 words (about 80 bytes). Built under the direction of John Mauchly and J. Presper Eckert at the University of Pennsylvania, ENIAC’s development and construction lasted from 1943 to full operation at the end of 1945. The machine was huge, weighing 30 tons, using 200 kilowatts of electric power and contained over 18,000 vacuum tubes, 1,500 relays, and hundreds of thousands of resistors, capacitors, and inductors.[60]

    Modern computers

    Concept of modern computer

    The principle of the modern computer was proposed by Alan Turing in his seminal 1936 paper,[61] On Computable Numbers. Turing proposed a simple device that he called “Universal Computing machine” and that is now known as a universal Turing machine. He proved that such a machine is capable of computing anything that is computable by executing instructions (program) stored on tape, allowing the machine to be programmable. The fundamental concept of Turing’s design is the stored program, where all the instructions for computing are stored in memory. Von Neumann acknowledged that the central concept of the modern computer was due to this paper.[62] Turing machines are to this day a central object of study in theory of computation. Except for the limitations imposed by their finite memory stores, modern computers are said to be Turing-complete, which is to say, they have algorithm execution capability equivalent to a universal Turing machine.

    Stored programs

    Main article: Stored-program computer

    Three tall racks containing electronic circuit boards
    A section of the reconstructed Manchester Baby, the first electronic stored-program computer

    Early computing machines had fixed programs. Changing its function required the re-wiring and re-structuring of the machine.[50] With the proposal of the stored-program computer this changed. A stored-program computer includes by design an instruction set and can store in memory a set of instructions (a program) that details the computation. The theoretical basis for the stored-program computer was laid out by Alan Turing in his 1936 paper. In 1945, Turing joined the National Physical Laboratory and began work on developing an electronic stored-program digital computer. His 1945 report “Proposed Electronic Calculator” was the first specification for such a device. John von Neumann at the University of Pennsylvania also circulated his First Draft of a Report on the EDVAC in 1945.[34]

    The Manchester Baby was the world’s first stored-program computer. It was built at the University of Manchester in England by Frederic C. WilliamsTom Kilburn and Geoff Tootill, and ran its first program on 21 June 1948.[63] It was designed as a testbed for the Williams tube, the first random-access digital storage device.[64] Although the computer was described as “small and primitive” by a 1998 retrospective, it was the first working machine to contain all of the elements essential to a modern electronic computer.[65] As soon as the Baby had demonstrated the feasibility of its design, a project began at the university to develop it into a practically useful computer, the Manchester Mark 1.

    The Mark 1 in turn quickly became the prototype for the Ferranti Mark 1, the world’s first commercially available general-purpose computer.[66] Built by Ferranti, it was delivered to the University of Manchester in February 1951. At least seven of these later machines were delivered between 1953 and 1957, one of them to Shell labs in Amsterdam.[67] In October 1947 the directors of British catering company J. Lyons & Company decided to take an active role in promoting the commercial development of computers. Lyons’s LEO I computer, modelled closely on the Cambridge EDSAC of 1949, became operational in April 1951[68] and ran the world’s first routine office computer job.

    Transistors

    Main articles: Transistor and History of the transistor

    Further information: Transistor computer and MOSFET

    Bipolar junction transistor (BJT)

    The concept of a field-effect transistor was proposed by Julius Edgar Lilienfeld in 1925. John Bardeen and Walter Brattain, while working under William Shockley at Bell Labs, built the first working transistor, the point-contact transistor, in 1947, which was followed by Shockley’s bipolar junction transistor in 1948.[69][70] From 1955 onwards, transistors replaced vacuum tubes in computer designs, giving rise to the “second generation” of computers. Compared to vacuum tubes, transistors have many advantages: they are smaller, and require less power than vacuum tubes, so give off less heat. Junction transistors were much more reliable than vacuum tubes and had longer, indefinite, service life. Transistorized computers could contain tens of thousands of binary logic circuits in a relatively compact space. However, early junction transistors were relatively bulky devices that were difficult to manufacture on a mass-production basis, which limited them to a number of specialized applications.[71]

    At the University of Manchester, a team under the leadership of Tom Kilburn designed and built a machine using the newly developed transistors instead of valves.[72] Their first transistorized computer and the first in the world, was operational by 1953, and a second version was completed there in April 1955. However, the machine did make use of valves to generate its 125 kHz clock waveforms and in the circuitry to read and write on its magnetic drum memory, so it was not the first completely transistorized computer. That distinction goes to the Harwell CADET of 1955,[73] built by the electronics division of the Atomic Energy Research Establishment at Harwell.[73][74]

    MOSFET (MOS transistor), showing gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink).

    The metal–oxide–silicon field-effect transistor (MOSFET), also known as the MOS transistor, was invented at Bell Labs between 1955 and 1960[75][76][77][78][79][80] and was the first truly compact transistor that could be miniaturized and mass-produced for a wide range of uses.[71] With its high scalability,[81] and much lower power consumption and higher density than bipolar junction transistors,[82] the MOSFET made it possible to build high-density integrated circuits.[83][84] In addition to data processing, it also enabled the practical use of MOS transistors as memory cell storage elements, leading to the development of MOS semiconductor memory, which replaced earlier magnetic-core memory in computers. The MOSFET led to the microcomputer revolution,[85] and became the driving force behind the computer revolution.[86][87] The MOSFET is the most widely used transistor in computers,[88][89] and is the fundamental building block of digital electronics.[90]

    Integrated circuits

    Main articles: Integrated circuit and Invention of the integrated circuit

    Further information: Planar process and Microprocessor

    Integrated circuits are typically packaged in plastic, metal, or ceramic cases to protect the IC from damage and for ease of assembly.

    The next great advance in computing power came with the advent of the integrated circuit (IC). The idea of the integrated circuit was first conceived by a radar scientist working for the Royal Radar Establishment of the Ministry of DefenceGeoffrey W.A. Dummer. Dummer presented the first public description of an integrated circuit at the Symposium on Progress in Quality Electronic Components in Washington, D.C., on 7 May 1952.[91]

    The first working ICs were invented by Jack Kilby at Texas Instruments and Robert Noyce at Fairchild Semiconductor.[92] Kilby recorded his initial ideas concerning the integrated circuit in July 1958, successfully demonstrating the first working integrated example on 12 September 1958.[93] In his patent application of 6 February 1959, Kilby described his new device as “a body of semiconductor material … wherein all the components of the electronic circuit are completely integrated”.[94][95] However, Kilby’s invention was a hybrid integrated circuit (hybrid IC), rather than a monolithic integrated circuit (IC) chip.[96] Kilby’s IC had external wire connections, which made it difficult to mass-produce.[97]

    Noyce also came up with his own idea of an integrated circuit half a year later than Kilby.[98] Noyce’s invention was the first true monolithic IC chip.[99][97] His chip solved many practical problems that Kilby’s had not. Produced at Fairchild Semiconductor, it was made of silicon, whereas Kilby’s chip was made of germanium. Noyce’s monolithic IC was fabricated using the planar process, developed by his colleague Jean Hoerni in early 1959. In turn, the planar process was based on Carl Frosch and Lincoln Derick work on semiconductor surface passivation by silicon dioxide.[100][101][102][103][104][105]

    Modern monolithic ICs are predominantly MOS (metal–oxide–semiconductor) integrated circuits, built from MOSFETs (MOS transistors).[106] The earliest experimental MOS IC to be fabricated was a 16-transistor chip built by Fred Heiman and Steven Hofstein at RCA in 1962.[107] General Microelectronics later introduced the first commercial MOS IC in 1964,[108] developed by Robert Norman.[107] Following the development of the self-aligned gate (silicon-gate) MOS transistor by Robert Kerwin, Donald Klein and John Sarace at Bell Labs in 1967, the first silicon-gate MOS IC with self-aligned gates was developed by Federico Faggin at Fairchild Semiconductor in 1968.[109] The MOSFET has since become the most critical device component in modern ICs.[106]

    Die photograph of a MOS 6502, an early 1970s microprocessor integrating 3500 transistors on a single chip

    The development of the MOS integrated circuit led to the invention of the microprocessor,[110][111] and heralded an explosion in the commercial and personal use of computers. While the subject of exactly which device was the first microprocessor is contentious, partly due to lack of agreement on the exact definition of the term “microprocessor”, it is largely undisputed that the first single-chip microprocessor was the Intel 4004,[112] designed and realized by Federico Faggin with his silicon-gate MOS IC technology,[110] along with Ted HoffMasatoshi Shima and Stanley Mazor at Intel.[b][114] In the early 1970s, MOS IC technology enabled the integration of more than 10,000 transistors on a single chip.[84]

    System on a Chip (SoCs) are complete computers on a microchip (or chip) the size of a coin.[115] They may or may not have integrated RAM and flash memory. If not integrated, the RAM is usually placed directly above (known as Package on package) or below (on the opposite side of the circuit board) the SoC, and the flash memory is usually placed right next to the SoC. This is done to improve data transfer speeds, as the data signals do not have to travel long distances. Since ENIAC in 1945, computers have advanced enormously, with modern SoCs (such as the Snapdragon 865) being the size of a coin while also being hundreds of thousands of times more powerful than ENIAC, integrating billions of transistors, and consuming only a few watts of power.

    Mobile computers

    The first mobile computers were heavy and ran from mains power. The 50 lb (23 kg) IBM 5100 was an early example. Later portables such as the Osborne 1 and Compaq Portable were considerably lighter but still needed to be plugged in. The first laptops, such as the Grid Compass, removed this requirement by incorporating batteries – and with the continued miniaturization of computing resources and advancements in portable battery life, portable computers grew in popularity in the 2000s.[116] The same developments allowed manufacturers to integrate computing resources into cellular mobile phones by the early 2000s.

    These smartphones and tablets run on a variety of operating systems and recently became the dominant computing device on the market.[117] These are powered by System on a Chip (SoCs), which are complete computers on a microchip the size of a coin.[115]

    Types

    See also: Classes of computers

    Computers can be classified in a number of different ways, including:

    By architecture

    By size, form-factor and purpose

    See also: List of computer size categories

    Hardware

    Main articles: Computer hardwarePersonal computer hardwareCentral processing unit, and MicroprocessorVideo demonstrating the standard components of a “slimline” computer

    The term hardware covers all of those parts of a computer that are tangible physical objects. Circuits, computer chips, graphic cards, sound cards, memory (RAM), motherboard, displays, power supplies, cables, keyboards, printers and “mice” input devices are all hardware.

    History of computing hardware

    Main article: History of computing hardware

    First generation
    (mechanical/electromechanical)
    CalculatorsPascal’s calculatorArithmometerDifference engineQuevedo’s analytical machines
    Programmable devicesJacquard loomAnalytical engineIBM ASCC/Harvard Mark IHarvard Mark IIIBM SSECZ1Z2Z3
    Second generation
    (vacuum tubes)
    CalculatorsAtanasoff–Berry ComputerIBM 604UNIVAC 60UNIVAC 120
    Programmable devicesColossusENIACManchester BabyEDSACManchester Mark 1Ferranti PegasusFerranti MercuryCSIRACEDVACUNIVAC IIBM 701IBM 702IBM 650Z22
    Third generation
    (discrete transistors and SSI, MSI, LSI integrated circuits)
    MainframesIBM 7090IBM 7080IBM System/360BUNCH
    MinicomputerHP 2116AIBM System/32IBM System/36LINCPDP-8PDP-11
    Desktop ComputerHP 9100
    Fourth generation
    (VLSI integrated circuits)
    MinicomputerVAXIBM AS/400
    4-bit microcomputerIntel 4004Intel 4040
    8-bit microcomputerIntel 8008Intel 8080Motorola 6800Motorola 6809MOS Technology 6502Zilog Z80
    16-bit microcomputerIntel 8088Zilog Z8000WDC 65816/65802
    32-bit microcomputerIntel 80386PentiumMotorola 68000ARM
    64-bit microcomputer[c]AlphaMIPSPA-RISCPowerPCSPARCx86-64ARMv8-A
    Embedded computerIntel 8048Intel 8051
    Personal computerDesktop computerHome computer, Laptop computer, Personal digital assistant (PDA), Portable computerTablet PCWearable computer
    Theoretical/experimentalQuantum computerIBM Q System One
    Chemical computer
    DNA computing
    Optical computer
    Spintronics-based computer
    Wetware/Organic computer

    Other hardware topics

    Peripheral device (input/output)InputMousekeyboardjoystickimage scannerwebcamgraphics tabletmicrophone
    OutputMonitorprinterloudspeaker
    BothFloppy disk drive, hard disk driveoptical disc drive, teleprinter
    Computer busesShort rangeRS-232SCSIPCIUSB
    Long range (computer networking)EthernetATMFDDI

    A general-purpose computer has four main components: the arithmetic logic unit (ALU), the control unit, the memory, and the input and output devices (collectively termed I/O). These parts are interconnected by buses, often made of groups of wires. Inside each of these parts are thousands to trillions of small electrical circuits which can be turned off or on by means of an electronic switch. Each circuit represents a bit (binary digit) of information so that when the circuit is on it represents a “1”, and when off it represents a “0” (in positive logic representation). The circuits are arranged in logic gates so that one or more of the circuits may control the state of one or more of the other circuits.

    Input devices

    When unprocessed data is sent to the computer with the help of input devices, the data is processed and sent to output devices. The input devices may be hand-operated or automated. The act of processing is mainly regulated by the CPU. Some examples of input devices are:

    Output devices

    The means through which computer gives output are known as output devices. Some examples of output devices are:

    Control unit

    Main articles: CPU design and Control unit

    Diagram showing how a particular MIPS architecture instruction would be decoded by the control system

    The control unit (often called a control system or central controller) manages the computer’s various components; it reads and interprets (decodes) the program instructions, transforming them into control signals that activate other parts of the computer.[d] Control systems in advanced computers may change the order of execution of some instructions to improve performance.

    A key component common to all CPUs is the program counter, a special memory cell (a register) that keeps track of which location in memory the next instruction is to be read from.[e]

    The control system’s function is as follows— this is a simplified description, and some of these steps may be performed concurrently or in a different order depending on the type of CPU:

    1. Read the code for the next instruction from the cell indicated by the program counter.
    2. Decode the numerical code for the instruction into a set of commands or signals for each of the other systems.
    3. Increment the program counter so it points to the next instruction.
    4. Read whatever data the instruction requires from cells in memory (or perhaps from an input device). The location of this required data is typically stored within the instruction code.
    5. Provide the necessary data to an ALU or register.
    6. If the instruction requires an ALU or specialized hardware to complete, instruct the hardware to perform the requested operation.
    7. Write the result from the ALU back to a memory location or to a register or perhaps an output device.
    8. Jump back to step (1).

    Since the program counter is (conceptually) just another set of memory cells, it can be changed by calculations done in the ALU. Adding 100 to the program counter would cause the next instruction to be read from a place 100 locations further down the program. Instructions that modify the program counter are often known as “jumps” and allow for loops (instructions that are repeated by the computer) and often conditional instruction execution (both examples of control flow).

    The sequence of operations that the control unit goes through to process an instruction is in itself like a short computer program, and indeed, in some more complex CPU designs, there is another yet smaller computer called a microsequencer, which runs a microcode program that causes all of these events to happen.

    Central processing unit (CPU)

    Main articles: Central processing unit and Microprocessor

    The control unit, ALU, and registers are collectively known as a central processing unit (CPU). Early CPUs were composed of many separate components. Since the 1970s, CPUs have typically been constructed on a single MOS integrated circuit chip called a microprocessor.

    Arithmetic logic unit (ALU)

    Main article: Arithmetic logic unit

    The ALU is capable of performing two classes of operations: arithmetic and logic.[122] The set of arithmetic operations that a particular ALU supports may be limited to addition and subtraction, or might include multiplication, division, trigonometry functions such as sine, cosine, etc., and square roots. Some can operate only on whole numbers (integers) while others use floating point to represent real numbers, albeit with limited precision. However, any computer that is capable of performing just the simplest operations can be programmed to break down the more complex operations into simple steps that it can perform. Therefore, any computer can be programmed to perform any arithmetic operation—although it will take more time to do so if its ALU does not directly support the operation. An ALU may also compare numbers and return Boolean truth values (true or false) depending on whether one is equal to, greater than or less than the other (“is 64 greater than 65?”). Logic operations involve Boolean logicANDORXOR, and NOT. These can be useful for creating complicated conditional statements and processing Boolean logic.

    Superscalar computers may contain multiple ALUs, allowing them to process several instructions simultaneously.[123] Graphics processors and computers with SIMD and MIMD features often contain ALUs that can perform arithmetic on vectors and matrices.

    Memory

    Main articles: Computer memory and Computer data storage

    Magnetic-core memory (using magnetic cores) was the computer memory of choice in the 1960s, until it was replaced by semiconductor memory (using MOS memory cells).

    A computer’s memory can be viewed as a list of cells into which numbers can be placed or read. Each cell has a numbered “address” and can store a single number. The computer can be instructed to “put the number 123 into the cell numbered 1357” or to “add the number that is in cell 1357 to the number that is in cell 2468 and put the answer into cell 1595.” The information stored in memory may represent practically anything. Letters, numbers, even computer instructions can be placed into memory with equal ease. Since the CPU does not differentiate between different types of information, it is the software’s responsibility to give significance to what the memory sees as nothing but a series of numbers.

    In almost all modern computers, each memory cell is set up to store binary numbers in groups of eight bits (called a byte). Each byte is able to represent 256 different numbers (28 = 256); either from 0 to 255 or −128 to +127. To store larger numbers, several consecutive bytes may be used (typically, two, four or eight). When negative numbers are required, they are usually stored in two’s complement notation. Other arrangements are possible, but are usually not seen outside of specialized applications or historical contexts. A computer can store any kind of information in memory if it can be represented numerically. Modern computers have billions or even trillions of bytes of memory.

    The CPU contains a special set of memory cells called registers that can be read and written to much more rapidly than the main memory area. There are typically between two and one hundred registers depending on the type of CPU. Registers are used for the most frequently needed data items to avoid having to access main memory every time data is needed. As data is constantly being worked on, reducing the need to access main memory (which is often slow compared to the ALU and control units) greatly increases the computer’s speed.

    Computer main memory comes in two principal varieties:

    RAM can be read and written to anytime the CPU commands it, but ROM is preloaded with data and software that never changes, therefore the CPU can only read from it. ROM is typically used to store the computer’s initial start-up instructions. In general, the contents of RAM are erased when the power to the computer is turned off, but ROM retains its data indefinitely. In a PC, the ROM contains a specialized program called the BIOS that orchestrates loading the computer’s operating system from the hard disk drive into RAM whenever the computer is turned on or reset. In embedded computers, which frequently do not have disk drives, all of the required software may be stored in ROM. Software stored in ROM is often called firmware, because it is notionally more like hardware than software. Flash memory blurs the distinction between ROM and RAM, as it retains its data when turned off but is also rewritable. It is typically much slower than conventional ROM and RAM however, so its use is restricted to applications where high speed is unnecessary.[f]

    In more sophisticated computers there may be one or more RAM cache memories, which are slower than registers but faster than main memory. Generally computers with this sort of cache are designed to move frequently needed data into the cache automatically, often without the need for any intervention on the programmer’s part.

    Input/output (I/O)

    Main article: Input/output

    Hard disk drives are common storage devices used with computers.

    I/O is the means by which a computer exchanges information with the outside world.[125] Devices that provide input or output to the computer are called peripherals.[126] On a typical personal computer, peripherals include input devices like the keyboard and mouse, and output devices such as the display and printerHard disk drivesfloppy disk drives and optical disc drives serve as both input and output devices. Computer networking is another form of I/O. I/O devices are often complex computers in their own right, with their own CPU and memory. A graphics processing unit might contain fifty or more tiny computers that perform the calculations necessary to display 3D graphics.[citation needed] Modern desktop computers contain many smaller computers that assist the main CPU in performing I/O. A 2016-era flat screen display contains its own computer circuitry.

    Multitasking

    Main article: Computer multitasking

    While a computer may be viewed as running one gigantic program stored in its main memory, in some systems it is necessary to give the appearance of running several programs simultaneously. This is achieved by multitasking i.e. having the computer switch rapidly between running each program in turn.[127] One means by which this is done is with a special signal called an interrupt, which can periodically cause the computer to stop executing instructions where it was and do something else instead. By remembering where it was executing prior to the interrupt, the computer can return to that task later. If several programs are running “at the same time”. then the interrupt generator might be causing several hundred interrupts per second, causing a program switch each time. Since modern computers typically execute instructions several orders of magnitude faster than human perception, it may appear that many programs are running at the same time even though only one is ever executing in any given instant. This method of multitasking is sometimes termed “time-sharing” since each program is allocated a “slice” of time in turn.[128]

    Before the era of inexpensive computers, the principal use for multitasking was to allow many people to share the same computer. Seemingly, multitasking would cause a computer that is switching between several programs to run more slowly, in direct proportion to the number of programs it is running, but most programs spend much of their time waiting for slow input/output devices to complete their tasks. If a program is waiting for the user to click on the mouse or press a key on the keyboard, then it will not take a “time slice” until the event it is waiting for has occurred. This frees up time for other programs to execute so that many programs may be run simultaneously without unacceptable speed loss.

    Multiprocessing

    Main article: Multiprocessing

    Cray designed many supercomputers that used multiprocessing heavily.

    Some computers are designed to distribute their work across several CPUs in a multiprocessing configuration, a technique once employed in only large and powerful machines such as supercomputersmainframe computers and servers. Multiprocessor and multi-core (multiple CPUs on a single integrated circuit) personal and laptop computers are now widely available, and are being increasingly used in lower-end markets as a result.

    Supercomputers in particular often have highly unique architectures that differ significantly from the basic stored-program architecture and from general-purpose computers.[g] They often feature thousands of CPUs, customized high-speed interconnects, and specialized computing hardware. Such designs tend to be useful for only specialized tasks due to the large scale of program organization required to use most of the available resources at once. Supercomputers usually see usage in large-scale simulationgraphics rendering, and cryptography applications, as well as with other so-called “embarrassingly parallel” tasks.

    Software

    Main article: Software

    Software refers to parts of the computer which do not have a material form, such as programs, data, protocols, etc. Software is that part of a computer system that consists of encoded information or computer instructions, in contrast to the physical hardware from which the system is built. Computer software includes computer programs, libraries and related non-executable data, such as online documentation or digital media. It is often divided into system software and application software. Computer hardware and software require each other and neither can be realistically used on its own. When software is stored in hardware that cannot easily be modified, such as with BIOS ROM in an IBM PC compatible computer, it is sometimes called “firmware”.

    Operating system /System SoftwareUnix and BSDUNIX System VIBM AIXHP-UXSolaris (SunOS), IRIXList of BSD operating systems
    LinuxList of Linux distributionsComparison of Linux distributions
    Microsoft WindowsWindows 95Windows 98Windows NTWindows 2000Windows MEWindows XPWindows VistaWindows 7Windows 8Windows 8.1Windows 10Windows 11
    DOS86-DOS (QDOS), IBM PC DOSMS-DOSDR-DOSFreeDOS
    Macintosh operating systemsClassic Mac OSmacOS (previously OS X and Mac OS X)
    Embedded and real-timeList of embedded operating systems
    ExperimentalAmoebaOberonAOS, Bluebottle, A2Plan 9 from Bell Labs
    LibraryMultimediaDirectXOpenGLOpenALVulkan (API)
    Programming libraryC standard libraryStandard Template Library
    DataProtocolTCP/IPKermitFTPHTTPSMTP
    File formatHTMLXMLJPEGMPEGPNG
    User interfaceGraphical user interface (WIMP)Microsoft WindowsGNOMEKDEQNX Photon, CDEGEMAqua
    Text-based user interfaceCommand-line interfaceText user interface
    Application SoftwareOffice suiteWord processingDesktop publishingPresentation programDatabase management system, Scheduling & Time management, SpreadsheetAccounting software
    Internet AccessBrowserEmail clientWeb serverMail transfer agentInstant messaging
    Design and manufacturingComputer-aided designComputer-aided manufacturing, Plant management, Robotic manufacturing, Supply chain management
    GraphicsRaster graphics editorVector graphics editor3D modelerAnimation editor3D computer graphicsVideo editingImage processing
    AudioDigital audio editorAudio playbackMixingAudio synthesisComputer music
    Software engineeringCompilerAssemblerInterpreterDebuggerText editorIntegrated development environmentSoftware performance analysisRevision controlSoftware configuration management
    EducationalEdutainmentEducational gameSerious gameFlight simulator
    GamesStrategyArcadePuzzleSimulationFirst-person shooterPlatformMassively multiplayerInteractive fiction
    MiscArtificial intelligenceAntivirus softwareMalware scannerInstaller/Package management systemsFile manager

    Languages

    There are thousands of different programming languages—some intended for general purpose, others useful for only highly specialized applications.

    Lists of programming languagesTimeline of programming languagesList of programming languages by categoryGenerational list of programming languagesList of programming languagesNon-English-based programming languages
    Commonly used assembly languagesARMMIPSx86
    Commonly used high-level programming languagesAdaBASICCC++C#COBOLFortranPL/IREXXJavaLispPascalObject Pascal
    Commonly used scripting languagesBourne scriptJavaScriptPythonRubyPHPPerl

    Programs

    The defining feature of modern computers which distinguishes them from all other machines is that they can be programmed. That is to say that some type of instructions (the program) can be given to the computer, and it will process them. Modern computers based on the von Neumann architecture often have machine code in the form of an imperative programming language. In practical terms, a computer program may be just a few instructions or extend to many millions of instructions, as do the programs for word processors and web browsers for example. A typical modern computer can execute billions of instructions per second (gigaflops) and rarely makes a mistake over many years of operation. Large computer programs consisting of several million instructions may take teams of programmers years to write, and due to the complexity of the task almost certainly contain errors.

    Stored program architecture

    Main articles: Computer program and Computer programming

    Replica of the Manchester Baby, the world’s first electronic stored-program computer, at the Museum of Science and Industry in Manchester, England

    This section applies to most common RAM machine–based computers.

    In most cases, computer instructions are simple: add one number to another, move some data from one location to another, send a message to some external device, etc. These instructions are read from the computer’s memory and are generally carried out (executed) in the order they were given. However, there are usually specialized instructions to tell the computer to jump ahead or backwards to some other place in the program and to carry on executing from there. These are called “jump” instructions (or branches). Furthermore, jump instructions may be made to happen conditionally so that different sequences of instructions may be used depending on the result of some previous calculation or some external event. Many computers directly support subroutines by providing a type of jump that “remembers” the location it jumped from and another instruction to return to the instruction following that jump instruction.

    Program execution might be likened to reading a book. While a person will normally read each word and line in sequence, they may at times jump back to an earlier place in the text or skip sections that are not of interest. Similarly, a computer may sometimes go back and repeat the instructions in some section of the program over and over again until some internal condition is met. This is called the flow of control within the program and it is what allows the computer to perform tasks repeatedly without human intervention.

    Comparatively, a person using a pocket calculator can perform a basic arithmetic operation such as adding two numbers with just a few button presses. But to add together all of the numbers from 1 to 1,000 would take thousands of button presses and a lot of time, with a near certainty of making a mistake. On the other hand, a computer may be programmed to do this with just a few simple instructions. The following example is written in the MIPS assembly language:

      begin:
      addi $8, $0, 0           # initialize sum to 0
      addi $9, $0, 1           # set first number to add = 1
      loop:
      slti $10, $9, 1000       # check if the number is less than 1000
      beq $10, $0, finish      # if odd number is greater than n then exit
      add $8, $8, $9           # update sum
      addi $9, $9, 1           # get next number
      j loop                   # repeat the summing process
      finish:
      add $2, $8, $0           # put sum in output register
    

    Once told to run this program, the computer will perform the repetitive addition task without further human intervention. It will almost never make a mistake and a modern PC can complete the task in a fraction of a second.

    Machine code

    In most computers, individual instructions are stored as machine code with each instruction being given a unique number (its operation code or opcode for short). The command to add two numbers together would have one opcode; the command to multiply them would have a different opcode, and so on. The simplest computers are able to perform any of a handful of different instructions; the more complex computers have several hundred to choose from, each with a unique numerical code. Since the computer’s memory is able to store numbers, it can also store the instruction codes. This leads to the important fact that entire programs (which are just lists of these instructions) can be represented as lists of numbers and can themselves be manipulated inside the computer in the same way as numeric data. The fundamental concept of storing programs in the computer’s memory alongside the data they operate on is the crux of the von Neumann, or stored program, architecture.[130][131] In some cases, a computer might store some or all of its program in memory that is kept separate from the data it operates on. This is called the Harvard architecture after the Harvard Mark I computer. Modern von Neumann computers display some traits of the Harvard architecture in their designs, such as in CPU caches.

    While it is possible to write computer programs as long lists of numbers (machine language) and while this technique was used with many early computers,[h] it is extremely tedious and potentially error-prone to do so in practice, especially for complicated programs. Instead, each basic instruction can be given a short name that is indicative of its function and easy to remember – a mnemonic such as ADD, SUB, MULT or JUMP. These mnemonics are collectively known as a computer’s assembly language. Converting programs written in assembly language into something the computer can actually understand (machine language) is usually done by a computer program called an assembler.

    A 1970s punched card containing one line from a Fortran program. The card reads: “Z(1) = Y + W(1)” and is labeled “PROJ039” for identification purposes.

    Programming language

    Main article: Programming language

    Programming languages provide various ways of specifying programs for computers to run. Unlike natural languages, programming languages are designed to permit no ambiguity and to be concise. They are purely written languages and are often difficult to read aloud. They are generally either translated into machine code by a compiler or an assembler before being run, or translated directly at run time by an interpreter. Sometimes programs are executed by a hybrid method of the two techniques.

    Low-level languages

    Main article: Low-level programming language

    Machine languages and the assembly languages that represent them (collectively termed low-level programming languages) are generally unique to the particular architecture of a computer’s central processing unit (CPU). For instance, an ARM architecture CPU (such as may be found in a smartphone or a hand-held videogame) cannot understand the machine language of an x86 CPU that might be in a PC.[i] Historically a significant number of other CPU architectures were created and saw extensive use, notably including the MOS Technology 6502 and 6510 in addition to the Zilog Z80.

    High-level languages

    Main article: High-level programming language

    Although considerably easier than in machine language, writing long programs in assembly language is often difficult and is also error prone. Therefore, most practical programs are written in more abstract high-level programming languages that are able to express the needs of the programmer more conveniently (and thereby help reduce programmer error). High level languages are usually “compiled” into machine language (or sometimes into assembly language and then into machine language) using another computer program called a compiler.[j] High level languages are less related to the workings of the target computer than assembly language, and more related to the language and structure of the problem(s) to be solved by the final program. It is therefore often possible to use different compilers to translate the same high level language program into the machine language of many different types of computer. This is part of the means by which software like video games may be made available for different computer architectures such as personal computers and various video game consoles.

    Program design

    Program design of small programs is relatively simple and involves the analysis of the problem, collection of inputs, using the programming constructs within languages, devising or using established procedures and algorithms, providing data for output devices and solutions to the problem as applicable.[132] As problems become larger and more complex, features such as subprograms, modules, formal documentation, and new paradigms such as object-oriented programming are encountered.[133] Large programs involving thousands of line of code and more require formal software methodologies.[134] The task of developing large software systems presents a significant intellectual challenge.[135] Producing software with an acceptably high reliability within a predictable schedule and budget has historically been difficult;[136] the academic and professional discipline of software engineering concentrates specifically on this challenge.[137]

    Bugs

    Main article: Software bug

    The actual first computer bug, a moth found trapped on a relay of the Harvard Mark II computer

    Errors in computer programs are called “bugs“. They may be benign and not affect the usefulness of the program, or have only subtle effects. However, in some cases they may cause the program or the entire system to “hang“, becoming unresponsive to input such as mouse clicks or keystrokes, to completely fail, or to crash.[138] Otherwise benign bugs may sometimes be harnessed for malicious intent by an unscrupulous user writing an exploit, code designed to take advantage of a bug and disrupt a computer’s proper execution. Bugs are usually not the fault of the computer. Since computers merely execute the instructions they are given, bugs are nearly always the result of programmer error or an oversight made in the program’s design.[k] Admiral Grace Hopper, an American computer scientist and developer of the first compiler, is credited for having first used the term “bugs” in computing after a dead moth was found shorting a relay in the Harvard Mark II computer in September 1947.[139]

    Networking and the Internet

    Main articles: Computer networking and Internet

    Visualization of a portion of the routes on the Internet

    Computers have been used to coordinate information between multiple physical locations since the 1950s. The U.S. military’s SAGE system was the first large-scale example of such a system, which led to a number of special-purpose commercial systems such as Sabre.[140]

    In the 1970s, computer engineers at research institutions throughout the United States began to link their computers together using telecommunications technology. The effort was funded by ARPA (now DARPA), and the computer network that resulted was called the ARPANET.[141] The technologies that made the Arpanet possible spread and evolved. In time, the network spread beyond academic and military institutions and became known as the Internet.

    The emergence of networking involved a redefinition of the nature and boundaries of computers. Computer operating systems and applications were modified to include the ability to define and access the resources of other computers on the network, such as peripheral devices, stored information, and the like, as extensions of the resources of an individual computer. Initially these facilities were available primarily to people working in high-tech environments, but in the 1990s, computer networking become almost ubiquitous, due to the spread of applications like e-mail and the World Wide Web, combined with the development of cheap, fast networking technologies like Ethernet and ADSL.

    The number of computers that are networked is growing phenomenally. A very large proportion of personal computers regularly connect to the Internet to communicate and receive information. “Wireless” networking, often utilizing mobile phone networks, has meant networking is becoming increasingly ubiquitous even in mobile computing environments.

    Unconventional computers

    Main article: Human computer

    See also: Harvard Computers

    A computer does not need to be electronic, nor even have a processor, nor RAM, nor even a hard disk. While popular usage of the word “computer” is synonymous with a personal electronic computer,[l] a typical modern definition of a computer is: “A device that computes, especially a programmable [usually] electronic machine that performs high-speed mathematical or logical operations or that assembles, stores, correlates, or otherwise processes information.”[142] According to this definition, any device that processes information qualifies as a computer.

    Future

    There is active research to make unconventional computers out of many promising new types of technology, such as optical computersDNA computersneural computers, and quantum computers. Most computers are universal, and are able to calculate any computable function, and are limited only by their memory capacity and operating speed. However different designs of computers can give very different performance for particular problems; for example quantum computers can potentially break some modern encryption algorithms (by quantum factoring) very quickly.

    Computer architecture paradigms

    There are many types of computer architectures:

    Of all these abstract machines, a quantum computer holds the most promise for revolutionizing computing.[143] Logic gates are a common abstraction which can apply to most of the above digital or analog paradigms. The ability to store and execute lists of instructions called programs makes computers extremely versatile, distinguishing them from calculators. The Church–Turing thesis is a mathematical statement of this versatility: any computer with a minimum capability (being Turing-complete) is, in principle, capable of performing the same tasks that any other computer can perform. Therefore, any type of computer (netbooksupercomputercellular automaton, etc.) is able to perform the same computational tasks, given enough time and storage capacity.

    Artificial intelligence

    A computer will solve problems in exactly the way it is programmed to, without regard to efficiency, alternative solutions, possible shortcuts, or possible errors in the code. Computer programs that learn and adapt are part of the emerging field of artificial intelligence and machine learning. Artificial intelligence based products generally fall into two major categories: rule-based systems and pattern recognition systems. Rule-based systems attempt to represent the rules used by human experts and tend to be expensive to develop. Pattern-based systems use data about a problem to generate conclusions. Examples of pattern-based systems include voice recognition, font recognition, translation and the emerging field of on-line marketing.

    Professions and organizations

    As the use of computers has spread throughout society, there are an increasing number of careers involving computers.

    Hardware-relatedElectrical engineeringElectronic engineeringComputer engineeringTelecommunications engineeringOptical engineeringNanoengineering
    Software-relatedComputer scienceComputer engineeringDesktop publishingHuman–computer interaction, Information technology, Information systemsComputational science, Software engineering, Video game industryWeb design

    The need for computers to work well together and to be able to exchange information has spawned the need for many standards organizations, clubs and societies of both a formal and informal nature.

    Standards groupsANSIIECIEEEIETFISOW3C
    Professional societiesACMAISIETIFIPBCS
    Free/open source software groupsFree Software FoundationMozilla FoundationApache Software Foundation

  • Laptop

    laptop computer or notebook computer, also known as a laptop or notebook, is a small, portable personal computer (PC). Laptops typically have a clamshell form factor with a flat-panel screen on the inside of the upper lid and an alphanumeric keyboard and pointing device on the inside of the lower lid.[1][2] Most of the computer’s internal hardware is in the lower part, under the keyboard, although many modern laptops have a built-in webcam at the top of the screen, and some even feature a touchscreen display. In most cases, unlike tablet computers which run on mobile operating systems, laptops tend to run on desktop operating systems, which were originally developed for desktop computers.

    Laptops are used in a variety of settings, such as at work (especially on business trips), in education, for playing gamesweb browsing, for personal multimedia, and for general home computer use. They can run on both AC power and rechargable battery packs and can be folded shut for convenient storage and transportation, making them suitable for mobile use.[3] Laptops combine many of the input/output components and capabilities of a desktop computer into a single unit, including a display screen (usually 11–17 in or 280–430 mm in diagonal size), small speakers, a keyboard, and a pointing device (namely compact ones such as touchpads or pointing sticks). Hardware specifications may vary significantly between different types, models, and price points.

    The word laptop, modeled after the term desktop (as in desktop computer), refers to the fact that the computer can be practically placed on the user’s lap; while the word notebook refers to most laptops sharing a form factor with paper notebooks. As of 2024, in American English, the terms laptop and notebook are used interchangeably;[4] in other dialects of English, one or the other may be preferred.[5] The term notebook originally referred to a type of portable computer that was smaller and lighter than mainstream laptops of the time, but has since come to mean the same thing and no longer refers to any specific size.

    Design elements, form factors, and construction can also vary significantly between models depending on the intended use. Examples of specialized models of laptops include 2-in-1 laptops, with keyboards that either be detached or pivoted out of view from the display (often marketed having a “laptop mode”), and rugged laptops, for use in construction or military applicationsPortable computers, which later developed into modern laptops, were originally considered to be a small niche market, mostly for specialized field applications, such as in the military, for accountants, or travelling sales representatives. As portable computers evolved into modern laptops, they became widely used for a variety of purposes.[6]

    History

    Main article: History of laptops

    See also: Portable computer § Early history

    Alan Kay holding the mockup of his Dynabook concept in 2008

    The history of the laptop follows closely behind the development of the personal computer itself. A “personal, portable information manipulator” was imagined by Alan Kay at Xerox PARC in 1968,[7] and described in his 1972 paper as the “Dynabook“.[8] The IBM Special Computer APL Machine Portable (SCAMP) was demonstrated in 1973.[9] This prototype was based on the IBM PALM processor.[10] The IBM 5100, the first commercially available portable computer, appeared in September 1975, and was based on the SCAMP prototype.[11]

    IBM 5100 (1975)

    As 8-bit CPU machines became widely accepted, the number of portables increased rapidly. The first “laptop-sized notebook computer” was the Epson HX-20,[12][13] invented (patented) by Suwa Seikosha‘s Yukio Yokozawa in July 1980,[14] introduced at the COMDEX computer show in Las Vegas by Japanese company Seiko Epson in 1981,[15][13] and released in July 1982.[13][16] It had an LCD screen, a rechargeable battery, and a calculator-size printer, in a 1.6 kg (3.5 lb) chassis, the size of an A4 notebook.[13] It was described as a “laptop” and “notebook” computer in its patent.[14]

    The Epson HX-20, the first “notebook computer“, was invented in 1980 and introduced in 1982.
    GRiD Compass 1101 (1982)

    Both Tandy/RadioShack and Hewlett-Packard (HP) also produced portable computers of varying designs during this period.[17][18] The first laptops using the flip form factor appeared in the early 1980s. The Dulmont Magnum was released in Australia in 1981–82, but was not marketed internationally until 1984–85. The US$8,150 (equivalent to $26,550 in 2024) GRiD Compass 1101, released in 1982, was used at NASA and by the military, among others. The Sharp PC-5000,[19] the Ampere WS-1,[20] and Gavilan SC were released between 1983 and 1985.[21][20][22] The Toshiba T1100 won acceptance by PC experts and the mass market as a way to have PC portability.[23]

    From 1983 onward, several new input techniques were developed and included in laptops, including the touch pad (Gavilan SC, 1983), the pointing stick (IBM ThinkPad 700, 1992), and handwriting recognition (Linus Write-Top,[24] 1987). Some CPUs, such as the 1990 Intel i386SL, were designed to use minimum power to increase the battery life of portable computers and were supported by dynamic power management features such as Intel SpeedStep and AMD PowerNow! in some designs.

    Some laptops in the 1980s using red plasma displays could only be used when connected to AC power, and had a built in power supply.[25]

    The development of memory cards was driven in the 1980s by the need for a floppy-disk-drive alternative, having lower power consumption, less weight, and reduced volume in laptops. The Personal Computer Memory Card International Association (PCMCIA) was an industry association created in 1989 to promote a standard for memory cards in PCs. The specification for PCMCIA type I cards, later renamed PC Cards, was first released in 1990.[26][27]

    Zenith SupersPort laptop, released in 1988

    Displays reached 640×480 (VGA) resolution by 1988 (Compaq SLT/286), and color screens started becoming a common upgrade in 1991,[28] with increases in resolution and screen size occurring frequently until the introduction of 17″ screen laptops in 2003. Hard drives started to be used in portables, encouraged by the introduction of 3.5″ drives in the late 1980s, and became common in laptops starting with the introduction of 2.5″ and smaller drives around 1990; capacities have typically lagged behind those of physically larger desktop drives.

    Optical disc drives became common in full-size laptops around 1997: initially, CD-ROM drives, supplanted by CD-R, then DVD, then Blu-ray drives with writing capability. Starting around 2011, the trend shifted against internal optical drives, and as of 2022, they have largely disappeared, though are still readily available as external peripherals.

    Resolutions of laptop webcams are 720p (HD), or 480p in lower-end laptops.[29] The earliest-known laptops with 1080p (Full HD) webcams, like the Samsung 700G7C, were released in the early 2010s.[30]

    Etymology

    The terms laptop and notebook trace their origins to the early 1980s, coined to describe portable computers in a size class smaller than the mainstream units (so-called “luggables”) but larger than pocket computers.[31][32] The etymologist William Safire traced the origin of laptop to some time before 1984;[33] the earliest attestation of laptop found by the Oxford English Dictionary dates to 1983.[34] The word is modeled after the term desktop, as in desktop computer.[33] Notebook, meanwhile, emerged earlier in 1982[35] to describe Epson‘s HX-20 portable, whose dimensions roughly correspond to a letter-sized pad of paper.[32][36]: 9 [37] Notebooks emerged as their own separate market from laptops with the release of the NEC UltraLite in 1988.[38]: 16 

    Notebooks and laptops continued to occupy distinct market segments into the mid-1990s,[39] but ergonomic considerations and customer preference for larger screens soon led to notebooks converging with laptops in the late 1990s.[40] Now, the terms laptop and notebook are synonymous, with laptop being the more common term in most English-speaking territories.[40][5]

    Types of laptops

    Compaq Armada laptop from the late 1990s
    Apple MacBook Air, an “ultraportable” laptop weighing under 3.0 lb (1.36 kg)
    Lenovo IdeaPad laptop
    Lenovo’s ThinkPad business laptop, originally an IBM product
    Asus Transformer Pad, a hybrid tablet, powered by Android OS
    Microsoft Surface Pro 3, 2-in-1 detachable
    Alienware gaming laptop with backlit keyboard and touch pad
    Samsung Sens laptop
    Panasonic Toughbook CF-M34, a rugged laptop/subnotebook

    Since the 1970s introduction of portable computers, their forms have changed significantly, resulting in a variety of visually and technologically differing subclasses. Excepting distinct legal trademark around terms (notably Ultrabook), hard distinctions between these classes were rare, and their usage has varied over time and between sources. Since the late 2010s, more specific terms have become less commonly used, with sizes distinguished largely by the size of the screen.

    Smaller and larger laptops

    Main articles: Notebook (laptop)Subnotebook, and Desktop replacement computer

    There were in the past a number of marketing categories for smaller and larger laptop computers; these included “notebook” and “subnotebook” models, low cost “netbooks“, and “ultra-mobile PCs” where the size class overlapped with devices like smartphone and handheld tablets, and “Desktop replacement” laptops for machines notably larger and heavier than typical to operate more powerful processors or graphics hardware.[41] All of these terms have fallen out of favor as the size of mainstream laptops has gone down and their capabilities have gone up; except for niche models, laptop sizes tend to be distinguished by the size of the screen, and for more powerful models, by any specialized purpose the machine is intended for, such as a “gaming laptop” or a “mobile workstation” for professional use.

    See also: Gaming computer § Gaming laptop computers, and Mobile workstation

    Convertible, hybrid, 2-in-1

    Main article: 2-in-1 PC

    The latest trend of technological convergence in the portable computer industry spawned a broad range of devices, which combined features of several previously separate device types. The hybridsconvertibles, and 2-in-1s emerged as crossover devices, which share traits of both tablets and laptops. All such devices have a touchscreen display designed to allow users to work in a tablet mode, using either multi-touch gestures or a stylus/digital pen.

    Convertibles are devices with the ability to conceal a hardware keyboard. Keyboards on such devices can be flipped, rotated, or slid behind the back of the chassis, thus transforming from a laptop into a tablet. Hybrids have a keyboard detachment mechanism, and due to this feature, all critical components are situated in the part with the display. 2-in-1s can have a hybrid or a convertible form, often dubbed 2-in-1 detachable and 2-in-1 convertibles respectively, but are distinguished by the ability to run a desktop OS, such as Windows 10. 2-in-1s are often marketed as laptop replacement tablets.[42]

    2-in-1s are often very thin, around 10 millimetres (0.39 in), and light devices with a long battery life. 2-in-1s are distinguished from mainstream tablets as they feature an x86-architecture CPU (typically a low- or ultra-low-voltage model), such as the Intel Core i5, run a full-featured desktop OS like Windows 10, and have a number of typical laptop I/O ports, such as USB 3 and Mini DisplayPort.

    2-in-1s are designed to be used not only as a media consumption device but also as valid desktop or laptop replacements, due to their ability to run desktop applications, such as Adobe Photoshop. It is possible to connect multiple peripheral devices, such as a mouse, keyboard, and several external displays to a modern 2-in-1.

    Microsoft Surface Pro-series devices and Surface Book are examples of modern 2-in-1 detachable, whereas Lenovo Yoga-series computers are a variant of 2-in-1 convertibles. While the older Surface RT and Surface 2 have the same chassis design as the Surface Pro, their use of ARM processors and Windows RT do not classify them as 2-in-1s, but as hybrid tablets.[43] Similarly, a number of hybrid laptops run a mobile operating system, such as Android. These include Asus’s Transformer Pad devices, examples of hybrids with a detachable keyboard design, which do not fall in the category of 2-in-1s.

    Rugged laptop

    Main article: Rugged computer

    A rugged laptop is designed to reliably operate in harsh usage conditions such as strong vibrations, extreme temperatures, and wet or dusty environments. Rugged laptops are bulkier, heavier, and much more expensive than regular laptops,[44] and thus are seldom seen in regular consumer use.

    Hardware

    This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources in this section. Unsourced material may be challenged and removed. (July 2016) (Learn how and when to remove this message)

    Further information: Personal computer and Computer hardware

    Inner view of a MacBook (Retina) laptop
    SODIMM memory module

    The basic components of laptops function identically to their desktop counterparts. Traditionally they were miniaturized and adapted to mobile use, The design restrictions on power, size, and cooling of laptops limit the maximum performance of laptop parts compared to that of desktop components, although that difference has increasingly narrowed.[45]

    In general, laptop components are not intended to be replaceable or upgradable by the end-user, except for components that can be detached; in the past, batteries and optical drives were commonly exchangeable. Some laptops feature socketed processors with sockets such as the Socket G2, but many laptops use processors that are soldered to the motherboard. Many laptops come with RAM and storage that is soldered to the motherboard and cannot be easily replaced. This restriction is one of the major differences between laptops and desktop computers, because the large “tower” cases used in desktop computers are designed so that new motherboardshard diskssound cardsRAM, and other components can be added. Memory and storage can often be upgraded with some disassembly, but with the most compact laptops, there may be no upgradeable components at all.[46]

    The following sections summarize the differences and distinguishing features of laptop components in comparison to desktop personal computer parts.[47]

    Display

    The typical laptop has a screen that, when unfolded, is upright to the user.

    Screen technology

    Laptop screens most commonly use liquid-crystal display (LCD) technology, although OLED panels have been used in some models.[citation needed] The display interfaces with the motherboard using the embedded DisplayPort protocol via the Low-voltage differential signaling (LVDS) 30 or 40 pin connector. Earlier laptops use the FPD-Link standard. The panels are mainly manufactured by AU OptronicsBOE TechnologyLG Display or Samsung Display.

    Surface finish

    Externally, it can be a glossy or a matte (anti-glare) screen.

    Sizes

    In the past, there was a broader range of marketing terms (both formal and informal) to distinguish between different sizes of laptops. These included netbookssubnotebooksultra-mobile PC, and desktop replacement computers; these are sometimes still used informally, although they are generally not used anymore in manufacturer marketing.

    As of 2021, mainstream consumer laptops tend to come with 11″, 13″ or 15″-16″ screens; 14″ models are more popular among business machines. Larger and smaller models are available, but less common – there is no clear dividing line in minimum or maximum size. Machines small enough to be handheld (screens in the 6–8″ range) can be marketed either as very small laptops or “handheld PCs”, while the distinction between the largest laptops and “All-in-One” desktops is whether they fold for travel.

    Resolution

    Having a higher resolution display allows more items to fit onscreen at a time, improving the user’s ability to multitask, although, at the higher resolutions on smaller screens, the resolution may only serve to display sharper graphics and text rather than increasing the usable area. Since the introduction of the MacBook Pro with Retina display in 2012, there has been an increase in the availability of “HiDPI” (or high pixel density) displays; as of 2022, this is generally considered to be anything higher than 1920 pixels wide. This has increasingly converged around 4K (3840-pixel-wide) resolutions.

    External displays can be connected to most laptops, with most models supporting at least one.[48] The use of technology such as USB4 (section Alternate Mode partner specifications). DisplayPort Alt Mode has been utilized to charge a laptop and provide display output over one USB-C Cable.[49]

    Refresh rates

    Most laptop displays have a maximum refresh rate of 60 Hz. The Dell M17x and Samsung 700G7A, both released in 2011, were among the first laptops to feature a 120 Hz refresh rate,[50][51] and more such laptops have appeared in the years since.

    Central processing unit (CPU)

    Laptop CPUs have advanced power-saving features and produce less heat than those intended for desktop use. Mainstream laptop CPUs made after 2018 have at least two processor cores, often four cores, and sometimes more, with 6 and 8 cores becoming more common.

    For the low price and mainstream performance, there is no longer a significant performance difference between laptop and desktop CPUs, but at the high end, the fastest desktop CPUs still substantially outperform the fastest laptop processors, at the expense of massively higher power consumption and heat generation; the fastest laptop processors top out at 56 watts of heat, while the fastest desktop processors top out at 150 watts (and often need water cooling).

    There has been a wide range of CPUs designed for laptops available from both IntelAMD, and other manufacturers. On non-x86 architectures, Motorola and IBM produced the chips for the former PowerPC-based Apple laptops (iBook and PowerBook). Between around 2000 to 2014, most full-size laptops had socketed, replaceable CPUs; on thinner models, the CPU was soldered on the motherboard and was not replaceable or upgradable without replacing the motherboard. Since 2015, Intel has not offered new laptop CPU models with pins to be interchangeable, preferring ball grid array chip packages which have to be soldered;[52] and as of 2021, only a few rare models using desktop parts.

    In the past, some laptops have used a desktop processor instead of the laptop version and have had high-performance gains at the cost of greater weight, heat, and limited battery life; this is not unknown as of 2022, but since around 2010, the practice has been restricted to small-volume gaming models. Laptop CPUs are rarely able to be overclocked; most use locked processors. Even on gaming models where unlocked processors are available, the cooling system in most laptops is often very close to its limits and there is rarely headroom for an overclocking–related operating temperature increase.

    Graphics processing unit (GPU)

    On most laptops, the GPU is integrated into the CPU to conserve power and space. This was introduced by Intel with the Core i-series of mobile processors in 2010, followed by similar AMD APU processors in January 2011.

    Before that, lower-end machines tended to use graphics processors integrated into the system chipset, while higher-end machines had a separate graphics processor. In the past, laptops lacking a separate graphics processor were limited in their utility for gaming and professional applications involving 3D graphics, but the capabilities of CPU-integrated graphics have converged with the low-end of dedicated graphics processors since the mid-2010s. For laptops possessing limited onboard graphics capability but sufficient I/O throughput, an external GPU (eGPU) can provide additional graphics power at the cost of physical space and portability.

    Higher-end laptops intended for gaming or professional 3D work still come with dedicated (and in some cases even dual) graphics processors on the motherboard or as an internal expansion card. Since 2011, these almost always involve switchable graphics so that when there is no demand for the higher performance dedicated graphics processor, the more power-efficient integrated graphics processor will be used. Nvidia Optimus and AMD Hybrid Graphics are examples of this sort of system of switchable graphics.

    Traditionally, the system RAM on laptops (as well as on desktop computers) was physically separate from the graphics memory used by the GPU. Apple’s M series SoCs feature a unified pool of memory for both the system and the GPU; this approach can produce substantial efficiency gains for some applications but comes at the cost of eGPU support.

    Memory

    Since around the year 2000, most laptops have used SO-DIMM slots in which RAM is mounted,[47] although, as of 2021, an increasing number of models use memory soldered to the motherboard, either alongside SO-DIMM slots or without any slots and soldering all memory to the motherboard. A new form factor, the CAMM module, is slated to fix the size and timing limitation. Before 2000, most laptops used proprietary memory modules if their memory was upgradable.

    In the early 2010s, high end laptops such as the 2011 Samsung 700G7A have passed the 10 GB RAM barrier, featuring 16 GB of RAM.[53]

    When upgradeable, memory slots are sometimes accessible from the bottom of the laptop for ease of upgrading; in other cases, accessing them requires significant disassembly. Most laptops have two memory slots, although some will have only one, either for cost savings or because some amount of memory is soldered. Some high-end models have four slots; these are usually mobile engineering workstations, although a few high-end models intended for gaming do as well.

    As of 2021, 8 GB RAM is most common, with lower-end models occasionally having 4 GB. Higher-end laptops may come with 16 GB of RAM or more.

    Internal storage

    The earliest laptops most often used floppy disks for storage, although a few used either RAM disk or tape. By the late 1980s hard disk drives had become the standard form of storage.

    Between 1990 and 2009, almost all laptops typically had a hard disk drive (HDD) for storage; since then, solid-state drives (SSD) have gradually come to replace hard drives in all but some inexpensive consumer models. Solid-state drives are faster and more power-efficient, as well as eliminating the hazard of drive and data corruption caused by a laptop’s physical impacts, as they use no mechanical parts such as a rotational platter.[54] In many cases, they are more compact as well. Initially, in the late 2000s, SSDs were substantially more expensive than HDDs, but as of 2021 prices on smaller capacity (under 1 terabyte) drives have converged; larger capacity drives remain more expensive than comparable-sized HDDs.

    Since around 1990, where a hard drive is present it will typically be a 2.5-inch drive; some very compact laptops support even smaller 1.8-inch HDDs, and a very small number used 1″ Microdrives. Some SSDs are built to match the size/shape of a laptop hard drive, but increasingly they have been replaced with smaller mSATA or M.2 cards. SSDs using the newer and much faster NVM Express standard for connecting are only available as cards.

    As of 2022, many laptops no longer contain space for a 2.5″ drive, accepting only M.2 cards; a few of the smallest have storage soldered to the motherboard. For those that can, they can typically contain a single 2.5-inch drive, but a small number of laptops with a screen wider than 15 inches can house two drives.

    A variety of external HDDs or NAS data storage servers with support of RAID technology can be attached to virtually any laptop over such interfaces as USBFireWireeSATA, or Thunderbolt, or over a wired or wireless network to further increase space for the storage of data. Laptops may also incorporate a SD or microSD card slot. This enables users to download digital pictures from an SD card onto a laptop, thus enabling them to delete the SD card’s contents to free up space for taking new pictures.

    Removable media drive

    Optical disc drives capable of playing CD-ROMs, compact discs (CD), DVDs, and in some cases, Blu-ray discs (BD), were nearly universal on full-sized models between the mid-1990s and the early 2010s. As of 2021, drives are uncommon in compact or premium laptops; they remain available in some bulkier models, but the trend towards thinner and lighter machines is gradually eliminating these drives and players – when needed they can be connected via USB instead.

    Speaker

    Laptops usually have built-in speakers and built-in microphones. However, integrated speakers may be small and of restricted sound quality to conserve space.

    Inputs

    Closeup of a touchpad on an Acer laptop, where buttons and the touch-sensitive surface are shared
    Closeup of a TrackPoint cursor and UltraNav buttons on a ThinkPad laptop
    Interfaces on a ThinkPad laptop (2011): Ethernet network port (center), VGA (left), DisplayPort (top right) and USB 2.0 (bottom right). Due to the trend towards very flat laptops and the widespread use of WLAN, the relatively high Ethernet socket is no longer mandatory in today’s devices, as is the technically outdated VGA.

    An alphanumeric keyboard is used to enter text, data, and other commands (e.g., function keys). A touchpad (also called a trackpad), a pointing stick, or both, are used to control the position of the cursor on the screen, and an integrated keyboard[55] is used for typing. Some touchpads have buttons separate from the touch surface, while others share the surface. A quick double-tap is typically registered as a click, and operating systems may recognize multi-finger touch gestures.

    An external keyboard and mouse may be connected using a USB port or wirelessly, via Bluetooth or similar technology. Some laptops have multitouch touchscreen displays, either available as an option or standard. Most laptops have webcams and microphones, which can be used to communicate with other people with both moving images and sound, via web conferencing or video-calling software.

    Laptops typically have USB ports and a combined headphone/microphone jack, for use with headphones, a combined headset, or an external mic. Many laptops have a card reader for reading digital camera SD cards.

    Input/output (I/O) ports

    On a typical laptop, there are several USB ports; if they use only the older USB connectors instead of USB-C, they will typically have an external monitor port (VGADVIHDMI or Mini DisplayPort or occasionally more than one), an audio in/out port (often in form of a single socket) is common. It is possible to connect up to three external displays to a 2014-era laptop via a single Mini DisplayPort, using multi-stream transport technology.[48]

    Apple, in a 2015 version of its MacBook, transitioned from a number of different I/O ports to a single USB-C port.[56] This port can be used both for charging and connecting a variety of devices through the use of aftermarket adapters. Apple has since transitioned back to using a number of different ports. Google, with its updated version of Chromebook Pixel, shows a similar transition trend towards USB-C, although keeping older USB Type-A ports for a better compatibility with older devices.[57] Although being common until the end of the 2000s decade, Ethernet network port are rarely found on modern laptops, due to widespread use of wireless networking, such as Wi-FiLegacy ports such as a PS/2 keyboard/mouse port, serial portparallel port, or FireWire are provided on some models, but they are increasingly rare. On Apple‘s systems, and on a handful of other laptops, there are also Thunderbolt ports, but Thunderbolt 3 uses USB-C. Laptops typically have a headphone jack, so that the user can connect headphones or amplified speaker systems for listening to music or other audio.

    Expansion cards

    In the past, a PC Card (formerly PCMCIA) or ExpressCard slot for expansion was often present on laptops to allow adding and removing functionality, even when the laptop is powered on; these are becoming increasingly rare since the introduction of USB 3.0. Some internal subsystems such as Ethernet, Wi-Fi, or a wireless cellular modem can be implemented as replaceable internal expansion cards, usually accessible under an access cover on the bottom of the laptop. The standard for such cards is PCI Express, which comes in both mini and even smaller M.2 sizes. In newer laptops, it is not uncommon to also see Micro SATA (mSATA) functionality on PCI Express Mini or M.2 card slots allowing the use of those slots for SATA-based solid-state drives.[58]

    Mobile PCI Express Module (MXM) is a type of expansion card that is used for graphics cards.[59]

    Battery and power supply

    See also: Smart battery

    Smart battery used in the late 1990s

    Since the late 1990s, laptops have typically used lithium ion or lithium polymer batteries, These replaced the older nickel metal-hydride typically used in the 1990s, and nickel–cadmium batteries used in most of the earliest laptops. A few of the oldest laptops used non-rechargeable batteries, or lead–acid batteries.

    Battery life is highly variable by model and workload and can range from one hour to nearly a day. A battery’s performance gradually decreases over time; a noticeable reduction in capacity is typically evident after two to three years of regular use, depending on the charging and discharging pattern and the design of the battery. Innovations in laptops and batteries have seen situations in which the battery can provide up to 24 hours of continued operation, assuming average power consumption levels. An example is the HP EliteBook 6930p when used with its ultra-capacity battery.[60]

    Laptops with removable batteries may support larger replacement batteries with extended capacity.

    A laptop’s battery is charged using an external power supply, which is plugged into a wall outlet. The power supply outputs a DC voltage typically in the range of 7.2—24 volts. The power supply is usually external and connected to the laptop through a DC connector cable. In most cases, it can charge the battery and power the laptop simultaneously. When the battery is fully charged, the laptop continues to run on power supplied by the external power supply, avoiding battery use. If the used power supply is not strong enough to power computing components and charge the battery simultaneously, the battery may charge in a shorter period of time if the laptop is turned off or sleeping. The charger typically adds about 400 grams (0.88 lb) to the overall transporting weight of a laptop, although some models are substantially heavier or lighter. Most 2016-era laptops use a smart battery, a rechargeable battery pack with a built-in battery management system (BMS). The smart battery can internally measure voltage and current, and deduce charge level and State of Health (SoH) parameters, indicating the state of the cells.[citation needed]

    Power connectors

    Laptop power supply with cylindrical coaxial DC power connector

    Historically, DC connectors, typically cylindrical/barrel-shaped coaxial power connectors have been used in laptops. Some vendors such as Lenovo made intermittent use of a rectangular connector.

    Some connector heads feature a center pin to allow the end device to determine the power supply type by measuring the resistance between it and the connector’s negative pole (outer surface). Vendors may block charging if a power supply is not recognized as the original part, which could deny the legitimate use of universal third-party chargers.[61]

    With the advent of USB-Cportable electronics made increasing use of it for both power delivery and data transfer. Its support for 20 V (common laptop power supply voltage) and 5 A typically suffices for low to mid-end laptops, but some with higher power demands such as gaming laptops depend on dedicated DC connectors to handle currents beyond 5 A without risking overheating, some even above 10 A. Additionally, dedicated DC connectors are more durable and less prone to wear and tear from frequent reconnection, as their design is less delicate.[62]

    Cooling

    Waste heat from the operation is difficult to remove in the compact internal space of a laptop. The earliest laptops used passive cooling; this gave way to heat sinks placed directly on the components to be cooled, but when these hot components are deep inside the device, a large space-wasting air duct is needed to exhaust the heat. Modern laptops instead rely on heat pipes to rapidly move waste heat towards the edges of the device, to allow for a much smaller and compact fan and heat sink cooling system. Waste heat is usually exhausted away from the device operator towards the rear or sides of the device. Multiple air intake paths are used since some intakes can be blocked, such as when the device is placed on a soft conforming surface like a chair cushion. Secondary device temperature monitoring may reduce performance or trigger an emergency shutdown if it is unable to dissipate heat, such as if the laptop were to be left running and placed inside a carrying case. Aftermarket cooling pads with external fans can be used with laptops to reduce operating temperatures.

    Docking station

    Docking station and laptop

    docking station (sometimes referred to simply as a dock) is a laptop accessory that contains multiple ports and in some cases expansion slots or bays for fixed or removable drives. A laptop connects and disconnects to a docking station, typically through a single large proprietary connector. A docking station is an especially popular laptop accessory in a corporate computing environment, due to the possibility of a docking station transforming a laptop into a full-featured desktop replacement, yet allowing for its easy release. This ability can be advantageous to “road warrior” employees who have to travel frequently for work, and yet who also come into the office. If more ports are needed, or their position on a laptop is inconvenient, one can use a cheaper passive device known as a port replicator. These devices mate to the connectors on the laptop, such as through USB or FireWire.

    Charging trolleys

    Laptop charging trolleys, also known as laptop trolleys or laptop carts, are mobile storage containers to charge multiple laptopsnetbooks, and tablet computers at the same time. The trolleys are used in schools that have replaced their traditional static computer labs[63] suites of desktop equipped with “tower” computers, but do not have enough plug sockets in an individual classroom to charge all of the devices. The trolleys can be wheeled between rooms and classrooms so that all students and teachers in a particular building can access fully charged IT equipment.[64]

    Laptop charging trolleys are also used to deter and protect against opportunistic and organized theft. Schools, especially those with open plan designs, are often prime targets for thieves who steal high-value items. Laptops, netbooks, and tablets are among the highest–value portable items in a school. Moreover, laptops can easily be concealed under clothing and stolen from buildings. Many types of laptop–charging trolleys are designed and constructed to protect against theft. They are generally made out of steel, and the laptops remain locked up while not in use. Although the trolleys can be moved between areas from one classroom to another, they can often be mounted or locked to the floor, support pillars, or walls to prevent thieves from stealing the laptops, especially overnight.[63]

    Solar panels

    Main article: Solar notebook

    In some laptops, solar panels are able to generate enough solar power for the laptop to operate.[65] The One Laptop Per Child Initiative released the OLPC XO-1 laptop which was tested and successfully operated by use of solar panels.[66] They were designing an OLPC XO-3 laptop with these features. The OLPC XO-3 was planned to operate with 2 watts of electricity.[67][68] Samsung has also designed the NC215S solar–powered notebook that was planned to be sold commercially in the U.S. market.[69]

    Accessories

    A common accessory for laptops is a laptop sleeve, laptop skin, or laptop case, which provides a degree of protection from scratches. Sleeves, which are distinguished by being relatively thin and flexible, are most commonly made of neoprene, with sturdier ones made of low-resilience polyurethane. Some laptop sleeves are wrapped in ballistic nylon to provide some measure of waterproofing. Bulkier and sturdier cases can be made of metal with polyurethane padding inside and may have locks for added security. Metal, padded cases also offer protection against impacts and drops. Another common accessory is a laptop cooler, a device that helps lower the internal temperature of the laptop either actively or passively. A common active method involves using electric fans to draw heat away from the laptop, while a passive method might involve propping the laptop up on some type of pad so it can receive more airflow. Some stores sell laptop pads that enable a reclining person on a bed to use a laptop.

    Modularity

    Opened bottom covers allow replacement of RAM and storage modules (Lenovo G555)

    Some of the components of earlier models of laptops can easily be replaced without opening completely its bottom part, such as the keyboard, battery, hard disk, memory modules, and CPU cooling fan.

    Some of the components of recent models of laptops reside inside. Replacing most of its components, such as the keyboard, battery, hard disk, memory modules, CPU cooling fan, etc., requires the removal of either the top or bottom part, the removal of the motherboard, and returning them.

    In some types, solder and glue are used to mount components such as RAM, storage, and batteries, making repairs additionally difficult.[70][71]

    Obsolete features

    modem PCMCIA card on a 1990s ThinkPad. The card would normally fully insert into the socket.

    Features that certain early models of laptops used to have that are not available in more recent models include:

    Characteristics

    Advantages over desktop computers

    A teacher using a laptop as part of a workshop for school children
    A man using a laptop on a park bench
    • Portability – Laptops are highly portable compared to desktop PCs.[72] Physical portability allows a laptop to be used in many places—not only at home and the office but also during commuting and flights, in coffee shops, in lecture halls and libraries, at clients’ locations or a meeting room, etc. Within a home, portability enables laptop users to move their devices from room to room. Portability offers several distinct advantages:
    • Productivity: Using a laptop in places where a desktop PC cannot be used can help employees and students to increase their productivity on work or school tasks, such as an office worker reading their work e-mails during an hour-long commute by train, or a student doing their homework at the university coffee shop during a break between lectures, for example.
    • Up-to-date information: Using a single laptop prevents fragmentation of files across multiple PCs as the files exist in a single location and are always up-to-date.
    • Connectivity: A key advantage of laptops is that they almost always have integrated connectivity features such as Wi-Fi and Bluetooth, and sometimes connection to cellular networks either through native integration or use of a hotspot. Wi-Fi networks and laptop programs are especially widespread at university campuses.[73]

    Other advantages of laptops:

    • Size: Laptops are smaller than desktop PCs. This is beneficial when space is at a premium, for example in small apartments and student dorms. When not in use, a laptop can be closed and put away in a desk drawer.
    • Low power consumption: Laptops are several times more power-efficient than desktops. A typical laptop uses 10–100 W, compared to 200–800W for desktops. This could be particularly beneficial for large businesses, which run hundreds of personal computers thus economies of scale, and homes where there is a computer running 24/7 (such as a home media server, print server, etc.).
    • Quiet: Laptops are typically much quieter than desktops, due both to the components (often silent solid-state drives replacing hard drives) and to less heat production leading to the use of fewer, sometimes no cooling fans. The latter has given rise to laptops that have no moving parts, resulting in complete silence during use.
    • Battery: a charged laptop can continue to be used in case of a power outage and is not affected by short power interruptions and blackouts, an issue that is present with desktop PCs.
    • All-in-One: designed to be portable, most modern laptops have all components integrated into the chassis. For desktops (excluding all-in-ones) this is usually divided into the desktop “tower” (the unit with the CPU, hard drive, power supply, etc.), keyboard, mouse, display screen, and optional peripherals such as speakers.

    Disadvantages

    Compared to desktop PCs, laptops have disadvantages in the following areas:PerformanceThe performance of laptops is often worse than comparably priced desktops. The upper limits of performance of laptops remain lower than desktops, due to mostly practical reasons, such as decreased battery life, increased size and heat, etc.UpgradeabilityThe upgradeability of laptops is limited compared to tower desktops, due to technical and economic reasons. In general, hard drives and memory can be upgraded easily. Due to the integrated nature of laptops, however, the motherboard, CPU, and graphics, are seldom officially upgradeable. Some efforts towards industry standard parts and layouts have been attempted, such as Common Building Block, but the industry remains largely proprietary and fragmented. There is no industry-wide standard form factor for laptops; Moreover, starting with 2013 models, laptops have become increasingly integrated (soldered) with the motherboard for most of its components (CPU, SSD, RAM, etc.) to reduce size and upgradeability prospects.[52]Durability

    A clogged heat sink on a laptop after 2.5 years of use

    Laptops are less durable than desktops/PCs. However, the durability of the laptop depends on the user if proper maintenance is done then the laptop can work longer.

    Laptop keyboard with its keys (except the space bar) removed, revealing crumbs, pet hair, and other detritus to be cleaned away

    Because of their portability, laptops are subject to more wear and physical damage than desktops, additionally hindered by their integrated nature. A liquid spill onto the keyboard, while a minor issue with a desktop system, can damage the internals of a laptop and destroy the computer, resulting in a costly repair or entire replacement of laptops. One study found that a laptop is three times more likely to break during the first year of use than a desktop.[74] To maintain a laptop, it is recommended to clean it every three months for dirt, debris, dust, and food particles. Most cleaning kits consist of a lint-free or microfiber cloth for the screen and keyboard, compressed air for getting dust out of the cooling fan, and a cleaning solution. Harsh chemicals such as bleach should not be used to clean a laptop, as they can damage it.[75]Heating and coolingLaptops rely on extremely compact cooling systems involving a fan and heat sink that can fail from blockage caused by accumulated airborne dust and debris. Most laptops do not have any type of removable dust collection filter over the air intake for these cooling systems, resulting in a system that gradually conducts more heat and noise as the years pass. In some cases, the laptop starts to overheat even at idle load levels. This dust is usually stuck inside where the fan and heat sink meet, where it can not be removed by a casual cleaning and vacuuming. Most of the time, compressed air can dislodge the dust and debris but may not entirely remove it. After the device is turned on, the loose debris is reaccumulated into the cooling system by the fans. Complete disassembly is usually required to clean the laptop entirely. However, preventative maintenance such as regular cleaning of the heat sink via compressed air can prevent dust build-up on the heat sink. Many laptops are difficult to disassemble by the average user and contain components that are sensitive to electrostatic discharge (ESD).Battery lifeBattery life is limited because the capacity drops with time, eventually warranting replacement after as little as 2–3 years. A new battery typically stores enough energy to run the laptop for five to six hours or more, depending on usage and the battery size. The battery is often easily replaceable and a higher capacity model may be obtained for longer charging and discharging time. Some laptops do not have the usual removable battery and have to be brought to the service center of their manufacturer or a third-party laptop service center to have their battery replaced. Replacement batteries can also be expensive, depending on the availability of the parts. Desktop PCs do not face similar problems since they are reliant on long lasting power supplies.Security and privacy

    Main article: Laptop theftBecause they are valuable, commonly used, portable, and easy to hide in a backpack or other type of bag, laptops are often stolen. Every day, over 1,600 laptops go missing from U.S. airports.[76] The cost of stolen business or personal data, and of the resulting problems (identity theftcredit card fraud, breach of privacy), can be many times the value of the stolen laptop itself. Consequently, the physical protection of laptops and the safeguarding of data contained in them are both of great importance. Some laptops, primarily professional and educational devices, have a Kensington security slot, which can be used to tether them with a security cable and lock. In addition, modern operating systems have features such as Activation Lock or similar that prevents the use of the device without credentials. As of 2015, some laptops also have additional security elements added, including biometric security components such as Windows Hello or Touch ID.[77]
    Software such as GadgetTrak and Find My Mac have been engineered to help people locate and recover their stolen laptops in the event of theft. Setting one’s laptop with a password on its firmware (protection against going to firmware setup or booting), internal HDD/SSD (protection against accessing it and loading an operating system on it afterward), and every user account of the operating system are additional security measures that a user should do.[78][79] Fewer than 5% of lost or stolen laptops are recovered by the companies that own them,[80] however, that number may decrease due to a variety of companies and software solutions specializing in laptop recovery. In the 2010s, the common availability of webcams on laptops raised privacy concerns. In Robbins v. Lower Merion School District (Eastern District of Pennsylvania 2010), school-issued laptops loaded with special software enabled staff from two high schools to take secret webcam shots of students at home, via their students’ laptops.[81][82][83]

    Ergonomics and health effects

    WristsProlonged use of laptops can cause repetitive strain injury because of their small, flat keyboard and trackpad pointing devices.[84] Usage of separate, external ergonomic keyboards and pointing devices is recommended to prevent injury when working for long periods of time; they can be connected to a laptop easily by USB, Bluetooth or via a docking station. Some health standards require ergonomic keyboards at workplaces.Neck and spineA laptop’s integrated screen often requires users to lean over for a better view, which can cause neck or spinal injuries. A larger and higher-quality external screen can be connected to almost any laptop to alleviate this and to provide additional screen space for more productive work. Another solution is to use a computer stand.Possible effect on fertilityA study by State University of New York researchers found that heat generated from laptops can increase the temperature of the lap of male users when balancing the computer on their lap, potentially putting sperm count at risk. The study, which included roughly two dozen men between the ages of 21 and 35, found that the sitting position required to balance a laptop can increase scrotum temperature by as much as 2.1 °C (4 °F). However, further research is needed to determine whether this directly affects male sterility.[85] A later 2010 study of 29 males published in Fertility and Sterility found that men who kept their laptops on their laps experienced scrotal hyperthermia (overheating) in which their scrotal temperatures increased by up to 2.0 °C (4 °F). The resulting heat increase, which could not be offset by a laptop cushion, may increase male infertility.[86][87][88][89][90]

    Laptop cooler (silver) under laptop (white), preventing heating of lap and improving laptop airflow

    A common practical solution to this problem is to place the laptop on a table or desk or to use a book or pillow between the body and the laptop.[citation needed] Another solution is to obtain a cooling unit for the laptop. These are usually USB powered and consist of a hard thin plastic case housing one, two, or three cooling fans – with the entire assembly designed to sit under the laptop in question – which results in the laptop remaining cool to the touch, and greatly reduces laptop heat buildup.ThighsHeat generated from using a laptop on the lap can also cause skin discoloration on the thighs known as “toasted skin syndrome“.[91][92][93][94]

    Sales

    Manufacturers

    Major laptop brands
    Acer / Gateway / eMachines / Packard BellTravelMateExtensaFerrari and AspireEasynoteChromebook
    AppleMacBook Air and MacBook Pro
    AsusTUFROGPro and ProArt, ZenBook, VivoBook, ExpertBook
    Clevo
    DellAlienwareInspironLatitudePrecisionVostro and XPS
    Dynabook (former Toshiba): PortegeTecraSatelliteQosmioLibretto
    Falcon Northwest: DRX, TLX, I / O
    FujitsuLifebook, Celsius
    GigabyteAORUS
    HCL (India): ME LaptopME NetbookLeaptop and MiLeap
    Hewlett-PackardPavilionEnvyProBookEliteBookZBook
    HuaweiMatebook
    LenovoThinkPadThinkBookIdeaPadYogaLegion and the Essential B and G Series
    LGXnoteGram
    Medion: Akoya (OEM version of MSI Wind)
    MSI: E, C, P, G, V, A, X, U series, ModernPrestige and Wind Netbook
    PanasonicToughbook, Satellite, Let’s Note (Japan only)
    SamsungSens: N, P, Q, R and X series; ChromebookATIV Book
    TG Sambo (Korea): AveratecAveratec Buddy
    Vaio (former Sony)
    Xiaomi: Mi, Mi Gaming and Mi RedmiBook laptops
    vte

    Main article: List of laptop brands and manufacturers

    There are many laptop brands and manufacturers. Several major brands that offer notebooks in various classes are listed in the adjacent box. The major brands usually offer good service and support, including well-executed documentation and driver downloads that remain available for many years after a particular laptop model is no longer produced. Capitalizing on service, support, and brand image, laptops from major brands are more expensive than laptops from smaller brands and ODMs. Some brands specialize in a particular class of laptops, such as gaming laptops (Alienware), high-performance laptops (HP Envy), netbooks (EeePC) and laptops for children (OLPC).

    Many brands, including the major ones, do not design and do not manufacture their laptops. Instead, a small number of Original Design Manufacturers (ODMs) design new models of laptops, and the brands choose the models to be included in their lineup. In 2006, 7 major ODMs manufactured 7 of every 10 laptops in the world, with the largest one (Quanta Computer) having 30% of the world market share.[95] Therefore, identical models are available both from a major label and from a low-profile ODM in-house brand.

    Historic market share

    Further information: Market share of personal computer vendors

    As of 1992–1993, Toshiba ranked as the global leading vendor in the notebook computer market. In the United States meanwhile, Apple led the market followed by Compaq.[96] In the year 1993, global revenue for the laptop market was led by Compaq, followed by Toshiba, Apple, NEC and IBM, altogether accounting for over 53% of global revenue.[97]

    In the United States, the top three vendors for notebooks in market share as of 1996 were: Toshiba, followed by Compaq, and followed by IBM.[98]

    As of 1999, Toshiba ranked first in worldwide laptop sales followed by IBM, Compaq, and Dell.[99] Toshiba led the market with a share of 18.6%.[100]

    In the first quarter of 2002 in the United States market, Dell controlled 25.2% in the notebook space, well ahead of Toshiba (13.6%) and Compaq (11.7%), the latter of which had been acquired by Hewlett-Packard (HP). At fourth and fifth place were Sony and IBM.[101]

    In Europe, the Middle East and Africa (EMEA) territories, Acer was the largest vendor of laptops, in 2004–2005, having overtaken HP and IBM there.[102][103]

    In the year 2005 according to IDC, Dell was the top global vendor of notebooks with a market share of 17.29%, followed by: HP (15.7%), Toshiba (10.96%), Acer (10.15%) and Lenovo (8.23%); Lenovo had acquired IBM that same year. The remaining of the top ten was made up of Fujitsu Siemens, Sony, NEC, Apple and Asus.[104]

    In the first quarter of 2010, the largest vendor of portable computers, including netbooks, was either HP or Acer, depending on data source. Both had shipped approximately 9 million units each. Dell, Toshiba, Asus and Lenovo followed, each with approximate sales of 5 to 6 million each. Apple, Samsung and Sony sold under 2 million each.[105]

    As of the third quarter of 2020, HP was cited as the leading vendor for notebook computers closely followed by Lenovo, both with a share of 23.6% each. They were followed by Dell (13.7%), Apple (9.7%) and Acer (7.9%).[106]

    Adoption by users

    Battery-powered portable computers had just 2% worldwide market share in 1986.[107] However, laptops have become increasingly popular, both for business and personal use.[108] The third quarter of 2008 was the first time when worldwide notebook PC shipments exceeded desktops, with 38.6 million units versus 38.5 million units.[108][109][110][111] In 2023, it was estimated that 166 million laptops were sold,[112] and in the first quarter of 2024, around 64% of personal computers sold were laptops or detachable tablets.[113] Due to the advent of tablets and affordable laptops, many computer users now have laptops due to the convenience offered by the device.

    Price

    Before 2008, laptops were very expensive. In May 2005, the average notebook sold for $1,131 while desktops sold for an average of $696.[114] Around 2008, however, prices of laptops decreased substantially due to low-cost netbooks, drawing an average US$689 at U.S. retail stores in August 2008. Starting with the 2010s, laptops have decreased substantially in price at the low end due to inexpensive and low power Arm processors, less demanding operating systems such as ChromeOS, and SoC’s. As of 2023, a new laptop can be obtained for $299.[115]

    Disposal

    See also: E-Waste

    The list of materials that go into a laptop computer is long, and many of the substances used, such as berylliumleadchromium, and mercury compounds, are toxic or carcinogenic to humans. Although these toxins are relatively harmless when the laptop is in use, concerns that discarded laptops cause a serious health and environmental risks when improperly discarded have arisen. The Waste Electrical and Electronic Equipment Directive (WEEE Directive) in Europe specified that all laptop computers must be recycled by law. Similarly, the U.S. Environmental Protection Agency (EPA) has outlawed landfill dumping or the incinerating of discarded laptop computers.

    Most laptop computers begin the recycling process with a method known as Demanufacturing, which involves the physical separation of the components of the laptop.[116] These components are then either grouped into materials (e.g. plastic, metal and glass) for recycling or more complex items that require more advanced materials separation (e.g.) circuit boards, hard drives and batteries.

    Corporate laptop recycling can require an additional process known as data destruction. The data destruction process ensures that all information or data that has been stored on a laptop hard drive can never be retrieved again. Below is an overview of some of the data protection and environmental laws and regulations applicable for laptop recycling data destruction:

    Extreme use

    See also: International Space Station § Communications and computers

    ISS laptops in the US lab

    The ruggedized Grid Compass computer was used since the early days of the Space Shuttle program. The first commercial laptop used in space was a Macintosh portable in 1990 on Space Shuttle mission STS-41 and again in 1991 aboard STS-43.[119][120][121][122] Apple and other laptop computers continue to be flown aboard crewed spaceflights, though the only long-duration flight certified computer for the International Space Station is the ThinkPad.[123] As of 2011, over 100 ThinkPads were aboard the ISS. Laptops used aboard the International Space Station and other spaceflights are generally the same ones that can be purchased by the general public but needed modifications are made to allow them to be used safely and effectively in a weightless environment such as updating the cooling systems to function without relying on hot air rising and accommodation for the lower cabin air pressure.[124] Laptops operating in harsh usage environments and conditions, such as strong vibrations, extreme temperatures, and wet or dusty conditions differ from those used in space in that they are custom designed for the task and do not use commercial off-the-shelf hardware.